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Abstract

Remotely operating complex obotic mechanisms in unstructued natu-
ral environments is difficult at best. When the communications time delay
is large, as for a Mars exploration rover operated from Earth, the difficul-
ties become enormous. Conventional appaches, such as rate contt of
the rover actuators, ae too ineficient and risky. The Intelligent Mecha-
nisms Laboratory at the NASA Ames Reseah Center has developed over
the past four years an achitecture for operating science explorationobots
in the presence of large communications time delays. The operator inter-
face of this system is called the ixtual Envir onment \ehicle Interface
(VEVI), and draws heavily on Mrtual Envir onment (or Virtual Reality)
technology. This paper describes the current operational version of VEVI,
which we refer to as version 2.0. In this paper we will describe the VEVI
design philosophy and implementation, and will describe some past exam-
ples of its use in field science exploration missions.

[. Introduction

A. Background

Remotely operating complex robotic mechanisms in unstruc-
tured natural environments is filiult at best. When the com-
munications time delay between the control station and the
remote mechanism is @&, the dificulties become enormous.
These mechanisms tend to have gdanumber of degrees of
freedom to control, such as actuators, sensors, and discrete pow-
ered subsystems. The mechanism will interact with its environ-
ment during the control of these degrees of freedom, and the
mechaniss subsystems will interact with each othre cost
of a typical planetary exploration mission is often driven by the
need to maintain a lge ground control sthin order to monitor
and control the mechanism during the mission.

B. Current Practice

Current practice for the control of a planetary exploration
mission is for the robotic mechanism to have minimal on-board
automation, in the sense of being able to make operational deci-
sions itself. The control of the mechanism is accomplished by
monitoring telemetry received from the system, interpreting
these telemetry data to determine the state of the mechanism,
and uplinking commands to the mechanism to achieve a desired
new state. The telemetry data are often displayed as numeric
streams or graphs, and the uplinked commands are entered by
the operators through typed text strings and/or button presses.

The interpretation of the system state from the telemetry data is
usually so complex that each subsystem has one or more dedi-
cated human controllers monitoring it at all times. The control-
lers are oganized in a hierarchyvith the lowest controller
levels responsible for monitoring and controlling the lowest
hardware levels on the spacecraft, and the top of the hierarchy
responsible for the entire spacecraft and the mission. This lay-
ering of responsibility is done to ensure that any single control-
ler is not overly tasked with the informatiolew from the
spacecraft and decision-making for the mission. Except for qui-
escent phases of the mission, such as interplanetary cruise, these
controllers are on constant duty at a dedicated control center.

C. Drawbacks

Although the conventional approach described above has
worked well enough in the past, it is very fig@ént in terms of
science return and very expensive in terms of total mission cost.
The science return for planetary exploration missions can be
guantified as science data returned per command uplink cycle.
Traditional mission control approaches have a significant delay
between the time telemetry data are received and a command
uplink is performed in response to the data. This is due to the
time required for expert controllers to interpret the telemetry
data, pass it up the hierarchyake a decision, pass the decision
down the hierarchyand uplink it to the vehicle. The decision
making process time is affected by the time required to synthe-
size the current state of the vehicle from the subsystem states.
For complex mechanisms with adarnumber of subsystems,
interacting strongly with the external environment, the current
state of the vehicle is not easily synthesized.

For traditional missions, the total mission cost is strongly
affected by the size of the ground control fstahe more com-
plex a mechanism and the more the mechanism interacts with its
environment, the lgrer the ground control sfafequired to
accomplish the mission. Not only is the ground controlf staf
large, but it is also highly trained in the mechanism design and
operating characteristics. This is required in order for the con-
trollers to properly acquire and interpret the telemetry data from
the mechanism.



D. A Different Approach

An entirely different approach to operating complex plane-
tary exploration mechanisms is to significantly reduce the size
of the ground control sthlby putting more software automation
on board the vehicle for local decision making. The type of local
vehicle automation we refer to is position and path control of
the vehicle, safety rifxes, and goal driven behavidrhe
ground control stéfcan be further reduced by implementing
highly automated ground control software to receive, interpret,
and synthesize the state of the mechanism for the ground oper-
ator, presenting the state of the vehicle in a very concise and
comprehensible fashion.

The human visual system is a very high bandwidth means for
communicating complex information to a human opeyétor
only if that information is properly presented. A fast reader is
able to acquire information from a wellyanized text stream at
several hundred words per minute, which corresponds to
approximately 10bits per second (bps). If the information is
plotted as a graph (1000 points presented at 10Hz, with a reso-
lution of 10 bits per point), then the data rate is increased to
approximately 10bps. If the information is presented as ani-
mated full color images (1e6 pixels with 20 bits per pixel at 30
Hz), then the data rate increases to ovébp8. In addition to
increasing the data acquisition rate for a human opeiater
senting complex geometric information visually allows the
operator to discern patterns and relationships which are not
apparent otherwise.

Our goal is to develop a user interface to control complex
mechanisms which allows an unsophisticated operator to com-
prehend the current and past state of the system quicigian
and review high-level commands to the system, and to send
those commands for the system to executetake advantage
of the highest bandwidth sensory channel available to a human
operatorand to encode the information in the most natural man-
ner possible, we have applied techniques from virtual environ-
ment (VE) or virtual reality technology [1][2]. i¥ual
Environments consist of highly interactive three-dimensional
computergenerated graphics, typically presented to the user
through a head-mounted, head-tracked stereo video display [3].
Although the techniques allow a designer to present almost any
information to the user in any arbitrary fashion, the information
is typically presented as a familiar physical environment. This
creates the illusion that the user is physically present in the envi-
ronment and is termed “full immersion.” In its extreme form,
full immersion attempts to replicate all human senses, such as
sound and touch.

The operator interface software described in this paper is
called the Wtual Environment ¥hicle Interface (VEVI). The
system not only consists of the virtual environment interface
itself, but also includes the distributed software architecture
required to support it. This paper describes the design and
implementation of the first versions of VEVI (through version
2.0), which have been used extensively for various field tests we
will describe laterA complete rewrite of VEVI is nearly com-
pleted, which incorporates all of our current experience with the
current version and addresses the current vessiiomtations.

This next version is called VEVI 3.0, and a paper describing its
initial design and implementation has been published by Piguet
[4].

Il. Requirements

During the initial design of VEVI we tried to satisfy a list of
requirements. Some of the requirements are imposed upon us by
the types of planetary exploration missions we want to address,
and some of them we generated ourselves in order to make the
system easily maintained and extensible. The next sections list
and discuss these design requirements.

A. Time Delay

One of the primary requirements for the operator interface is
that it be usable and efficient in the presence of long communi-
cations time delays. In typical terrestrial remote telerobotic
applications, the communications time delays vary from milli-
seconds to a few seconds, depending on the proximity of the
operator to the mechanism and wether or not satellite commu-
nications are involved. For short time delays direct teleopera-
tion of the mechanism is possible, where rate or position control
input devices are employed by the operator to send commands
to the mechanism or vehicle, and live telemetry and camera
views from the remote site are sent back and displayed to the
operator If the cameras are configured as anthropomorphic ste-
reo pairs and are slaved to the opetatoead, then the system
is often described as a “telepresence system”. When the time
delay grows much lger than the dynamic time scale of the
remote mechanism, this approach starts to become vefiy inef
cient because the delay between the sensing and the actuation
makes the control system unstable. When faced with this kind
of time delay, human operators will quickly adopt a “move and
wait” control strategyin which the results from the last com-
mand are comfmed before the next command is sent [5][6].
This strategy is very iné€ient in terms of operations time
because during the round trip delay time the mechanism is typ-
ically idle. The move-and-wait strategy also quickly induces
fatigue in the human operator. For very large time delays, such
as the tens of minutes light travel time between Earth and Mars,
a move-and-wait control strategy would be very expensive in
terms of the science accomplished during the lifetime of the
mission.

B. Communications Bandwidth

A related problem to that of time delay is the communications
bandwidth from the human controller to the remote mechanism.
The communications systems employed for a planetary explo-
ration mission are typically limited by the transmission dis-
tance, the power available to the remote mechanism, antenna
sizes and pointing requirements, and downlink system avail-
ability. Typical Mars mission designs allow communications
bandwidths of much less thanStits per second, with some as
small as tens of bits per secondtiVithese bandwidths, it is dif-
ficult or impossible to support any kind of closed-loop control
over the vehicle if the dynamic time scale of the vehicle in its
environment is short. The typical response is to either rely on an
even less dicient move-and-wait strateggr to incorporate
local decision making capability into the system [7]. The oper-
ator interface should be usable anticednt when operating
over low bandwidth communication channels.



C. Efficient Command Cycles

Since the fundamental metric of any planetary exploration
mission is the quality and amount of science data returned dur-
ing the life of the mission, the efficiency of the control strategy
is proportional to the average science data return per command
uplink cycle. If a controller must send a dozen commands to the
vehicle in order to position it for a single science measurement,
with the separation between each command being at least as
long as the round trip light travel time, then this is lefisieft
than a controller acquiring the same science measurement in
response to sending a single command. THerdifice between
the single command and the dozen commands to accomplish the
same goal in the above description is the “level” of the com-
mand. A high-level or task-level command is one which accom-
plishes an entire task in response to a single command [6][8][9].
Lower level commands to do the same task would consist of a
series of smaller tasks. Each command to the vehicle is delayed
by the round trip communications delawt the high level com-
mand takes one delay time, while the low level command
sequence takes multiple delay times. The operator interface
should support both high and low level commands, to allow the
operator maximumléxibility in sending eficient command
sequences.

D. Situational Awareness

A typical problem with control interfaces that depend on
fixed camera views is that it is fifult for the operator to
develop sufcient situational awareness of the mechanism in its
surroundings. Theidld of view of the cameras is typically
restricted, and the cameras cannot be slaved to the ofserator
head due to the communications delays mentioned above.
Humans operating vehicles on the Earth have a very wide field-
of-view, which is coupled with a very fast and flexible scanning
mechanism (the neck and body) which allow them to quickly
build up an accurate global view of the surroundings with which
to safely operate the vehicle. A human operator will often
remember where obstacles and hazards are without having to
look at them repeatedlWhen operating a vehicle using fixed
moderateitld-of-view cameras, in the presence of sigaifit
communications time delays, a human operator will have a
greatly reduced situational awareness. Planetary exploration
missions in hazardous environments under these conditions are
at increased risk. This results in the operator making decisions
more slowly and more conservatively than necesddrg in
turn leads to reduced missiorfieiency, as described above.
The operator interface should lead to greater situational aware-
ness than can be accomplished with the traditional control
approach.

E. Lower Operations Cost

A major life cycle cost in space flight science missions is the
traditional requirement for a lge ground stéfto monitor and
control the spacecraft, in addition to whatever science teams are
directing the science operations for the mission. Ground control
of the vehicle is required because the spacecraft have minimal
capability to monitor themselves and take autonomous action
for normal and emeency operations. The & size of the
ground support sthfs dictated by the requirement that each
subsystem of the spacecraft have one or more controllers each

shift who are experts in the subsystem. The virtual environ-
ment-based operator interface we are developing can poten-
tially reduce the number of mission controller required to run a
space flight mission, which can in turn lower mission costs dra-
matically.

F. Distributed Operations

Another signiicant cost for science exploration missions is
the requirement that science operations team be co-located at a
centralized science operations facilityot only does this
increase the cost of the mission, but it also tends to reduce active
participation in the mission by lge segments of the science
community One way of addressing these problems is to design
the mission operations system to support distributed command
and control, allowing science team participation in the mission
from widely distant sites, with minimal support hardware
required. The communications infrastructure in the U.S. and in
most of the world is easily sufficient to support this type of sci-
ence operation during a mission. The ground operations inter-
face software should allow highly distributed mission
monitoring and control. In addition, it should allow wide distri-
bution of the science and mission data and status for educational
purposes.

G. Modular Components

Modern lage software systems, such as this one, can only be
efficiently maintained and extended if the software is written in
a modular fashion. Not only does this allow the system to be
more easily designed and implemented bgdaeams of pro-
grammers, but it also allows for future modification and exten-
sion of the system with lessened impacts of possible Sefgef
on the rest of the system. This design approach also allows for
a laige degree of code re-use from mission to mission, as only
small parts of the system need to be changed to supgderedif
vehicle conifyjurations and designs. 8\vill describe several
radically diferent vehicles upon which this same system has
been implemented, demonstrating the amount of re-use possible
with this implementation.

H. Commercial Products Where Possible

In the past, the traditional NASA approach to designing mis-
sion software has been to start from scratch for each mission,
which repeatedly incurs a very high cost. Current missions have
become too expensive to allow this approach to continue. The
capability, qualityand maturity of software and hardware prod-
ucts available commercially fethe-shelf (COTS) from indus-
try is such that NASA cannot hope to develop similar systems
at reasonable cost.&\believe that leveraging from commer-
cially available tools and products is the only coficiit
approach to lgre software systems for NASA space missions.
The VEVI system has been designed and implemented using as
many COTS components as feasible, as will be described
below.

lll. Design

A. System Architecture

The VEVI system was designed to satisfy the above require-
ments. From previous work with controlling a Puma manipula-



tor arm from within a virtual environment operator interface
[10][11], we expected that an operator interface based on virtual
environment techniques would be able to compensate for long
time delays between the operator and the remote vehicle. For
this remote manipulator work, we were using taskiControl
Architecture (TCA) [12] to send commands to the Puma arm,
and to operate a distributed machine vision processing system.
We were impressed with the manner in which tasks could be
distributed over a homogenous computer network.détided

to design the VEVI system in a distributed mannertake
advantage of multiple processors when needed.

The distributed architecture we are using has been described
previously [13]. V& will briefly summarize it here. The system
components are ganized as processes on a communications
backbone. The processes consist of 3D renderers, 2D displays,
user input devices, and data archivers, all tied together with var-
ious communications nodes. Each process sends and receives
data through a communication node, which relays data to other
communication nodes in the system. Figure 1 is a diagram of a
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Figure 1 System conduration diagram of VEVI communica-
tions. All of the processes communicate to each other through
communications nodes.

typical VEVI system configuration for a single operator and a
single vehicle. We have used various communications layers to
tie together the communications nodes, but the most common
one was TCA.

B. Rendering/Simulation Layer

When an operator is using VEVI in a the virtual environment
mode, he or she will be mainly interacting with the 3D renderer
This process displays the vehicle and its environment to the user
as a highly interactive three-dimensional graphical disflhg

output to the user can range fromat panel 3D display to a
full-immersion stereo head-mounted head-tracked display. The
3D display process exchanges information with the rest of the
system through a local communication node over a shared
memory link. The 3D renderer is not a simulabuart is rather a
system displayJnless explicitly driven by an external dynamic
simulator the objects in the environment represent the actual
state of the remote environment. Their behaviors are driven
entirely by external messages generated elsewhere in the sys-
tem (usually by the vehicle to be controlled).

1. WorldToolKit ™ (WTK)

The 3D renderer is basically an interactive graphical simula-
tion, which displays the vehicle in a given state along with
whatever is known about the environment around the vehicle.
At the time of the design of this system there were various
options we considered for implementing the 3D rend€@gae
approach was to develop the renderer from a low level graphics
library such as GL or PEX, as was done for VIEWS [10][A
second approach was to take advantage of higher level commer-
cially available graphics libraries, such a®NdToolKit™
(WTK) from Sense8 Corp. [14] or from VPL, Inc. A third
approach was to extend a full commercial simulation package,
such as IGRIP' from Deneb Inc., and CimStatithfrom
Silma Inc. Our design philosophy was to use COTS as much as
possible and still achieve our goal. This led to our decision to
use a high-level commercial graphics and simulation library
After reviewing the capabilities and degree of extensibility of
the product, we chose thedWdToolKit™ package from
Sense8 Corp. The main advantages of this package are: (i) it is
an architecture-independent Application Programming Inter-
face (API), making porting our system tofdient platforms
relatively easyand (ii) it takes advantage of the native graphics
rendering hardware support on most platforms. One of the ben-
eficial aspects of working with a commercial product is the
opportunity to influence the vendor to improve the product with
respect to NASA needs, and so return NASA technology back
into the commercial world. Over the development cycle of the
VEVI system, we continually beta-tested new versions of the
WTK library and gave feedback to the vendor on problems we
discovered or features we neede. fdlnd the response of the
company to our requirements and feedback to be excellent.

2. Communications Nodes

All of the processes in VEVI, such as the 3D rend¢ner2D
displays, the data archivers, and the user input devices, commu-
nicate to each other using communications nodes. These nodes
are most commonly paired with a single process, and commu-
nicate with that process over a dedicated shared memory link.
The node is responsible for taking data from the process over
the shared memory link and sending them out over the commu-
nications link to other nodes. The node is also responsible for
information flow in the reverse direction, from the external sys-
tem to the process. The node task handles any data formatting
or translation necessargnd serves as a data rate throttle in
some cases. The rationale for this layering is to insulate the high
performance graphics process, which should run at a constant
(high) rate, from the data transmission task, which can run at an
unpredictable varying rate (high or low). Another reason for this



communications approach is that swapping communications
link protocols becomes much easias the rendering process
need not be changed at all.

A primary benefit with this distributed layered communica-
tions approach is that processes can be added or removed at will
during mission operations. &\tommonly use this feature to
bring in parallel control stations at geographically remote loca-
tions during a mission, for collaboration or educational pur-
poses. W have also used this feature to temporarily add
processes such as a data archiver or alternate input device to a
running system.

C. Communications Layers

The first communications layer we used with VEVI was that
of the Task Control Architecture (TCA), and it still remains the
most common one we use. TCA is actually much more than a
communications layebeing a tool designed to implement
autonomous systems [12]. The higher functions of TCA are
built upon a general communications layer which has most of
the features we required. TCA has been ported to a variety of
platforms, and uses the TCP/IP protocol. The features of TCA
which we use are centralized registering and routing of mes-
sages, which allows us to start up and shut down communica-
tions tasks without a priori knowledge of the system
configuration, and message broadcasting, which allows us to
generate state information from our various processes without
requiring knowledge of the recipient.

We have used or investigated the use of other communica-
tions layers for VEVI, such as TCX [15]elRIP [16], NDDS
[17], and various custom protocols such as PiVeCS (University
of Maryland Space Systems Lab), and TCPREAD (Stanford
University Aerospace Research Lab). These other communica-
tions layers either replaced TCA in our system or were used
through custom gateways which translated between the com-
munications formats.

D. Communications Protocol

The information fbwing into or out of the distributed pro-
cesses consists of either state information or commands. State
information is typically broadcast from some other part of the
system, such as the vehicle or another operaal reflected as
a change in the displayed configuration to the operatstate
update might consist of the position and orientation of the vehi-
cle in space, along with the position and orientation of any sub-
systems of the vehicle which are articulated. Examples of
articulated subsystems are pan-tilt cameras or manipulator
arms. Commands are sent from the user interface components
to the vehicle or the rest of the system, or from components of
the user interface to each oth&rcommand will often change
the internal state of the user interface, such as turning on a nav-
igation grid or repositioning the viewpoint.

Data are exchanged between the local components of the user
interface and the local communications node via a block of
shared memoryThe shared memory isganized as a data
structure with sections for state information and read/write syn-
chronization. The most common shared memory data structure
used by VEVI is shown in figure 2.

To broadcast a state update from within the operator inter-
face, in response to a change in viewpoint for instance, the 3D
renderer will load the new viewpoint into the data structure,

typedef struct remote_control {

int command;

int notready;

int value;

int status;

int count;

float x, y, z;

float gx, qy, qz, qw;

char name[NAMLEN]; /* network obj name */
char obj[OBJLEN]; /* obj file name */
char time[TIMLEN];

3
Figure 2 Shared memory data structure for communicating
between VEVI processes and communications nodes.
load its own unique network identifier and icon into the “name”
and “obj” fields, then load the message type, “REMOTE_UP-
DATE”, into the command field. The communications node will
see the new command appear in shared memory and will trans-
fer the state information into a TCA message structure and call
the TCA broadcast function. Figure 3 shows the TCA message

typedef struct { /* object type */

char *name; /* text name of the object */

char *obj; /* description of the object */

long status; /* object status flags */

POSE_TYPE p; /* position and orientation */

char *time; /* current time */

long validity; /* Pose validity */

h
Figure 3 TCA message structure used between communications
nodes.

structure. Other communications nodes currently active in the
system will then see this state broadcast and act upon it accord-
ingly. The network identifier is a string attached to every mes-
sage which identiés the source of the message uniqukly
made up of a concatenation of the user name, the machine, the
process ID, the object, and (optionally) the subsystem of the
object. An example network ID is: “blah@foolzrc.nasa.go-
v*42:0bserver”.

The reception of state information or command messages is
similar. Since a node using the TCA broadcast function will
send messages to itself, each node or process will inspect the
incoming state messages to see if it should ignore them. If the
message is of interest (i.e. not its own), then the node will take
the information in the TCA message structure and copy it into
shared memory with the “REMOTE_UPDRE” command. The
interface process will periodically check shared memory for
commands, and upon seeing one will use the information to
change its state (if a command message) or change the state of
one of the objects it is maintaining (if it is a state update mes-
sage). Figure 4 is a list of the command messages currently sup-
ported in VEVI 2.0. State updates come in through the
“REMOTE_UPDATE” command, environment updates come
in through the “REMOTE_TERRAIN_NEW” command, and
the other commands change the viewpoint or the list of things
displayed to the user.



#define REMOTE_NULL 0
#define REMOTE_MOVE_VIEW 1
#define REMOTE_MOVE_OBJ 2
#define REMOTE_RELEASE 3
#define REMOTE_CONSTRAIN 4
#define REMOTE_MOVE_NOT 5
#define REMOTE_ORIGINAL 6
#define REMOTE_FLY_TO 7

#define REMOTE_ZOOM_CHANGE 8
#define REMOTE_ZOOM_RESET 9
#define REMOTE_POINT_MODE 11
#define REMOTE_SELECT 12
#define REMOTE_GO_TO 13

#define REMOTE_DRAW_NAV 14
#define REMOTE_DRAW_COMP 15
#define REMOTE_SET_MARK 16
#define REMOTE_DRAW_MARK 17
#define REMOTE_GO_TO_MARK 18
#define REMOTE_SENS_DTRANS 19
#define REMOTE_SENS_RTRANS 20
#define REMOTE_SENS_DROLL 21
#define REMOTE_SENS_RROLL 22
#define REMOTE_CAMERA_SNAP 23
#define REMOTE_VLOCK 24

#define REMOTE_TERRAIN_NEW 25
#define REMOTE_CONT_KILL 99
#define REMOTE_NODE_KILL 199
#define REMOTE_UPDATE 100

Figure 4 List of command messages sent over the shared mem-
ory link to the 3D renderer process.

E. File Formats

There are many configuration or model file formats used by
VEVI 2.0. The first class of mode file formats are those directly
supported by WTK, such as NFF and DXRese are geometric
data fle formats, and contain polygon descriptions of objects
along with colors and textures of the polygons. Since VEVI is
built using the WTK libraryany model file format it supports is
usable by VEVI. In addition to the basic model files, we require
additional information which describes the articulation struc-
ture of the mechanism.&\esigned two file formats to accom-
modate this extra information. The first, and simplest one, is the
Object Definition File (ODF). This file lists the position and ori-
entation of each independently articulated component of a
mechanism, along with the articulation degree of freedom, in a
tree structure. \thout this file, VEVI assumes that the object is
a single piece. With an ODF description, VEVI builds a tree of
attached subsystems, which it can animate. Figure 5 shows
Dante II, one of the more complex vehicles we have animated
for a mission, and listing 1 shows the ODF which represents it.

The ODF format is very restricted in the types of articulation
it can describe. In particulamanipulator arms with more than
a few degrees of freedom arefidifilt to describe in ODH-or
this reason, we developed a greatly extended articulation
description format, called the Robot Arm File Format (RAFF).
RAFF is adequate to describe arbitrary serial linked manipula-
tors with large degrees of freedom, and is described in depth in
Piguet [18]. Listing 2 shows a sample RAFF description of a
manipulator.

View Window

Main

Figure 5 Dante Il in VEVI modelled from with the ODF format.
F. Plug-in Modules

The distributed backbone communications architecture
underlying VEVI allows for independent support modules to be
developed and applied easixamples of these are: (i) inter-
face control panels, (ii) state data archivers, (iii) map views, (iv)
rate control input devices, (v) vehicle control panels, and (vi)
kinematic or dynamic simulators. Activating or deactivating
these modules at any time during mission operations is possible
due to the communications layering and standards. Figures 6, 7,
and 8 show example screen images of the interface control
panel, the map viewgand the vehicle control panel. These typ-
ically augment the main 3D renderer interface.

IV. Implementation

As mentioned above, the 3D renderer in VEVI is imple-
mented using the facilities of the WTK libraMy/TK provides
functions to import polygon descriptions of objects in various
file formats and then animate them by modifying the olgect’
position, orientation, and other attributes (size, godte.).
WTK allows the programmer to specify viewpoints and light-
ing, and provides a particularly simple method for attaching
various input devices, such as 6 DOF sensors, to objects and
viewpoints. Figure 9 shows a simpdidl low diagram of the
VEVI 3D renderer.

At start-up, the program reads the command line options, and
sets internal flags based on these options. The WTK simulation
loop is initialized and the model files are read. If the model file
is an ODF file (which can refer to other ODF or NFF files), then
it is recursively read until all of the models are read. The light-
ing and viewpoints are initialized, and the video mode is set
depending on the command line flags. Once the initialization is
complete, the WTK simulation loop is started and continues
until the user (or an external signal) ends the process. During the
simulation, the rendering of the objects is maintained by the
WTK library, with various user functions called once every pass
through the simulation loop. Some of these functions handle rel-



#odt

object 1 inner models/Dante_Parts/iframe

object 2 bottom models/Dante_Parts/bottom 1 0.0000 0.0000 0.0000000000000X
object 3 outer models/Dante_Parts/oframe 2 0.0000 0.0000 0.0000000000000 X
object 4 leg21 models/Dante_Parts/legl 3 1.0040 -0.4400 0.7240000000000 X
object 5 leg22 models/Dante_Parts/leg2 4 1.0040 -0.4400 1.6552000000000 X
object 6 leg23 models/Dante_Parts/leg3 5 1.0040 -0.1692 1.6552000000000 X
object 7 leg01 models/Dante_Parts/legl 3 -1.0040 -0.4400 0.7240000000000 X
object 8 leg02 models/Dante_Parts/leg2 7 -1.0040 -0.4400 1.6552000000000 X
object 9 leg03 models/Dante_Parts/leg3 8 -1.0040 -0.1692 1.6552000000000 X
object 10 leg11 models/Dante_Parts/leglr 3 -1.0040 -0.4400 -0.7240000000000 X

object 20 leg42 models/Dante_Parts/leg2 19 -0.5100 -0.4400 1.3372000000000 X
object 21 leg43 models/Dante_Parts/leg3 20 -0.5100 -0.1692 1.3372000000000 X
object 22 leg51 models/Dante_Parts/leglr 1 -0.5100 -0.4400 -0.4060000000000 X
object 23 leg52 models/Dante_Parts/leg2 22 -0.5100 -0.4400 -1.3372000000000 X
object 24 leg53 models/Dante_Parts/leg3r 23 -0.5100 -0.1692 -1.3372000000000 X
object 25 leg71 models/Dante_Parts/leg1r 1 0.5100 -0.4400 -0.4060000000000 X
object 26 leg72 models/Dante_Parts/leg2 25 0.5100 -0.4400 -1.3372000000000 X
object 27 leg73 models/Dante_Parts/leg3r 26 0.5100 -0.1692 -1.3372000000000 X
object 28 num0 models/Dante_Parts/0.nff3 -1.0040 -1.1000 0.7240000000000 X

object 36 tether models/Dante_Parts/tether.nff 1 0.0000 -0.1500 -0.5000000000000 X
object 37 mast models/Dante_Parts/mast 1 0.0000 -1.0000 0.0000000000000X

Listing 1: A partial Object Definition File (ODF) which describes the Dante Il articulation structure.

# Robot Arm File Format (RAFF) file
# path to geometry files
lu/people/piguet/src/arm/manip/models/
# number of degrees of freedom

4

# number of kinematic frames

4

# number of WTK files for base

0

# file names for base

# Transform matrix: 1

#

# variable joint angle (theta)

180.0

# link offset (d)

100.0

# link length (a)

0.0

# twist angle (alpha)

90.0

# type of joint (1:prismatic 2:revolute)

2

# joint number

1

# lower joint limit

10.0

# upper joint limit

350.0

# number of WTK files for this transform
1

# name of WTK file describing geometry
4base.vst

# Transform matrix: 2
#

Listing 2: An example Robot Arm File Format (RAFF) file which describes a simple 4-degree of freedom arm.
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Figure 6 Motif-based interface panel used to send command messages
to the 3D renderer over the shared memory link.

Figure 7 A screen image of the Magéw window showing telemetry
tracks of a vehicle during an exploration mission.

atively simple tasks like drawing native graphics overlays on
top of the WTK polygon rendering. Most of the work modifying
the simulation is done in a couple of user functions, however
One of these functions is a general “action” function, executed
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Figure 8 A screen image of a 2D vehicle control panel for the Mar-
sokhod rover.

once per pass. For the VEVI renderer, this function contains all
of the command input to the process, whether it be from the
keyboard, menu, or external shared memdhe other main
functions are tied directly to each graphical object, and are
called once per pass if the object is active. In our rendbier
function contains code which perform tasks like terrain follow-
ing or sending shared memory updates.

A. Interface Modes

The VEVI renderer is capable of supporting a variety of dis-
play modes, at the choice of the usdre simplest mode, and
the one which requires the simplest output hardware, is a single
graphics window on a workstation. Another mode, which
requires stereo viewing goggles, will put the workstation screen
into a feld sequential stereo display modeeaking feld-
sequential LCD goggles synchronized to the display allows the
user to view the scene in stereo. A more extreme display mode,
which requires significant display hardware, is the full immer-
sion mode. In this mode, the scene is output in stereo to a head-
mounted displayMounted on the head-mounted display is a
head-tracking sensauch as a Logiteéh acoustic tracker or a
Polhemu8" magnetic trackern this mode, the viewpoint is
slaved to the head-tracking senSdre user experiences a sense
of immersion in the scene because the viewpoint changes as the
user moves his head, allowing the user to look around in all
directions with natural head motions.

Command input from the user can come from a variety of
input devices. The simplest one is the common three button
mouse, in which the mouse location on the screen is mapped to
rates in the three position and three rotational degrees of free-
dom. More exotic input devices supported by WTK are full six
DOF rate and position devices such as pressure sensors (Space-
Ball™), acoustic trackers (Logite®), and magnetic trackers
(Polhemu&*). These can be used for rate or position input from
the hands or head.
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Figure 9 A control flow diagram of the VEVI 3D renderer.
B. Main View

The main view window can be positioned anywhere in the
scene by any supported input device, and in addition can be
slaved to a head-trackém most of the stereo display modes the
main view window is the only displalgut in the windowed dis-
play mode, additional windows can be displayed simulta-
neously The most common one is a “bisdye” windowwhich

"\

shows an overhead view of the scene, centered on the active

vehicle. The overhead view also shows the field of view of the
main window graphicallyand is actively slaved to the main
window Although the operator may position the viewpoint with
the input devices, another common command is to attach the
viewpoint to an object in the scene. This gives the operator the
impression that he is “in” the object and looking out, similar to
driving a car The operator can initiate this attachment at any
time, and if the viewpoint is distant from the active object then
the viewpoint is “flown” along a trajectory to the object. This is
to ensure that the operator maintains a sense of localization in
the environment. Figures 10 antl dhow screen images of the
VEVI renderer’s main and bird’s eye windows.

C. Graphics Overlays

In addition to the graphic overlay in the bgdye window
showing the field of view in the main windptlhere are numer-
ous other auxiliary graphic displays overlayed on the polygon
rendering. On the Silicon Graphics platform we normally use

Fuin View Window

Figure 10 A screen image of the main VEVI view window. The vehi-

cle to the left (in color) is the active vehicle. The vehicle to the right
(grayed) is the path planning icon. The green segmented lines connect-
ing them is the path being constructed. The vehicle is rendered on
sensed terrain, with a navigation grid visible above.

Figure 11 A screen image of the VEVI birsleye view windowwhich

shows the same scene asiguffe 10, but from a viewpoint directly
above the vehicle.

for missions, these overlays are simple GL graphics calls
designed to display extra information to the operdtoere is a
navigation grid which hovers a constant height above the active
object in the scene, and provides a reference plane when the ter-
rain is at a steep angle. In addition to the navigation grid, there
is a compass sphere available to surround the active object in



the scene. This is useful as a heads-up navigation display when tems and vehicles, and theald tested on several missions

the viewpoint is locked to the object. Another graphic overlay

is available when the user is constructing a path to send to the
vehicle. The path is shown as a segmented line. A very helpful
graphic display in the scene is a “marker”. These can be placed
at any time, and are designed to indicate an area of interest in

the scene. Some uses of markers in the past have been to desig-

nate the starting point for a traverse, to designate a collection
point for samples, and to designate sciencgetarto be reac-
quired later in the mission. An interesting feature of markers is
that when active, they are visible from anywhere in the scene no
matter how far away they are. This aids in navigating back to
them. A final related graphic, which is rendered using the poly-
gon renderer instead of native graphic calls, is the “billboard”.
This icon is a polygon representation of image data taken at a

particular location in the scene. The image data is rendered as a

texture on polygons in the scene which are not part of the envi-
ronment, as a way of @anizing and displaying image data col-
lected during a mission.

D. Shared Virtual Environments

A point touched on earlier is that the VEVI renderer not only
accepts state updates from the controlled vehicle, but also

accepts updates from other renderers present in the system. The

active vehicles are represented by models of themselves, while
the other renderers are represented by siiegliuman head
models. These “floating heads” in the scene represent the posi-
tion and viewpoint of other operators in the system. Since all of
the operators are viewing the same simulation, remote collabo-
ration during the mission is possible. The network ID discussed
earlier which tags each message sent over the network, contains
enough information to allow active communication between the
operators. W have tested systems in which an operator could
invoke a menu by clicking on a “head” and choose to send an e-
mail message to the other operatgren a talk window with the
other operatqror open a live digital audio channel to the oper-
ator.

The ability to invoke an action by selecting an object in the
scene can be used in many interesting ways, aside from the
above communications selection. In the VEVI rendesdren
an object is selected by the pointing device the current model
path in the file system is searched for a file with a name match-
ing the object name, and an extension of “.info”. If this file is
found, then the file is executed as a shell scrigt.nave used
this feature to attach a hypertext design document to vehicle
objects, so that the operator could bring up design data on the
vehicle by clicking on the object in the simulation. Items like
editors for e-mail, talk windows, and hypertext documents are
useful when the display mode is windowed, but is less useful
when the operator is fully immersed. The resolution of head-
mounted displays are still too low for dense text dispay
reading text pages in a head-mounted display is awkward.

V. Applications

We have found that the mosfedtive way of developing
teleoperations interface software is to bring a prototype of the
interface software to an initial level of maturignd then field
test the system in science field experiments. The initial develop-
ment of VEVI was accomplished with a series of robotic sys-

described belowWe briefy describe eachdld test, giving a
summary of the important lessons learned, but then refer the
reader to papers describing each mission more completely.

A. VIEWS and the Puma Arm

As mentioned earlier, the initial work which investigated the
use of virtual environments for telerobotic control was per-
formed on a Puma manipulatdihe virtual environment system
used was the itual Environment Wrkstation (VIEWS),
which was a custom developed VE system [1][Eigure 12

Figure 12 An operator in the VIEWS system controlling a Puma 560
manipulator arm. The operatswview is visible in the monitors to the
left.

is a photograph of an operator in the VIEWS system. Although
the Puma 560 we used was limited as a mobile platform, it did
have high level control capability. High level control allows an
operator to send a single command which accomplishes an
entire task, rather than sending a stream of low level commands
to accomplish the same task. It is much easier to send high level
commands from within a VE interface, and this is what makes
possible the compensation for communications time delay.

B. NOMAD and MEL

The frst platforms used to develop the original version of
VEVI were simple mobile bases used mainly for telepresence
testing, in which the vehicle'primary purpose was to transport
and orient cameras transmitting video streams back to the oper-
ator These vehicles were rate controlled ompich is a very
low level control interface. Ther$ét vehicle was NOMAD,
which is a three-wheeled omnidirectional indoor vehicle. It is
radio controlled from a host CPU, and carries a single video
camera. The second vehicle was MEL, shown in Figure 13,
which is a wheeled outdoor vehicle with an on-board CPU and
a radio ethernet link to the operatdhis vehicle has been the
main platform for VEVI software development, as it has an on-
board hardware architecture identical to the science field vehi-
cles. These initial platforms had very limited high-level control
capability, but allowed us to address the problems of positional
uncertainty common with mobile platforms. Figure 14 shows
the operator’s view of the vehicle through the VEVI interface.



Figure 13 This vehicle, called MEL, is a senstich mobile platform
with on-board computation and a high bandwidth communications link
to the ground control system. It is the main platform upon which MEL
was developed.

Figure 14 The operator view of MEL from within the VEVI 3D ren-
derer.

C. HEAVENLY

The first vehicle controlled from VEVI which had true high
level control capability was an air cushion vehicle called
HEAVENLY, developed by the Stanford University Aerospace
Robotics Lab (ARL) [8]. The ARL has developed the concept
of task-level control of space robots, which makes it easier for
human operators to command the robots to accomplish complex
tasks. HEAENLY is capable of performing tasks like station
keeping at a commanded position, and flying to and grappling a
free flying object. Figure 15 shows the VEVI renderer screen of
the operator interface to the vehicle. The floater robot is to the
left, and the taget object to be grasped is to the right. Both
objects ride on a cushion of air on a flat granite table to simulate
the drag-free environment of space. The primary lessons
learned from this experiment is that adequate sensing of the
environment is critical, and high-level commands to the remote
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Figure 15A screen image of the opera®wiew of the aibearing
floater robot HEAVENLY This was the first robot to be controlled at a
task level from within VEVI.

mechanism are much mordieient to send from a VE interface
than low level commands.

D. Antarctic TROV

As mentioned previouslyhe most rapid advances in VEVI
occurred as a result of using the operator interface to control sci-
ence exploration vehicles in terrestrial science field trials. The
first science field trail to use VEVI was the Antarcteepres-
ence Remotely OperatedNcle (TROV) Project [19][20]. In
this project, a small robotic submersible was controlled under
the sea ice in the Antarctic from NASA Ames Research Center
The vehicle was used to test whether telepresence, or the project
of the human sensory apparatus into a remote location, was a
viable operator interface for exobiology research. Although
most of the detailed driving was accomplished through telepres-
ence, VEVI was used to provide an enhanced situational aware-
ness for the remote operators during the mission. The sensor
stream from TROV was too sparse to allow a detailed model of
the exploration area to be built in real-time. The terrain models
used in VEVI were constructed from the sensor data later in the
mission. VEVI was also used as a mapping tool for the science
data returned by the mission. Figure 16 shows the TROV vehi-
cle in the Antarctic during the mission, along with a screen
image from the operator interface used during the mission
shown in figure 17.

E. Dante Il and Marsokhod

Two other recent missions to make use of VEVI are the Dante
[l mission to Mt. SpuirAlaska and the Marsokhod Planetary
Analogue mission to Kilauea, Hawaii. The Dante Il mission
interface is well described in Fong, et al. [21]. The main
advances to VEVI accomplished for that mission was the addi-
tion of rapidly updated terrain maps from the vehgla'ser
scannerand the display of haptic information from the vehi-



Figure 16 The Telepresence Remotely Operateghitle (TROV)
under the sea ice in the Antarctic, under remote control from NASA
Ames.

Figure 17 The operatds view of the VEVI 3D renderer during the

Antarctic TROV mission. The vehicle is shown above a sensed terrain,

with its telemetry tracks visible in the background. A science marker is
visible at the upper left of the screen.

cle’s legs. The Dante Il vehicle also has the most complex artic-

ulation we have modelled in VEVI. Figure 18 shows Dante Il

Figure 18 Photograph of Dante Il at Mt. Spurr.

during the mission. The VEVI screen from the mission has been
shown previously in figure 5. The sensor data of the terrain sur-
rounding the vehicle arrived at a fast enough rate to be used to
plan the vehicles path and determine terrain clearance. This is
the first mission in which the sensor stream from the remote site
was rich enough that the vehicle could have been controlled
entirely from within VEVI without auxiliary camera views.

We have performed sever#&lfl tests of the Russian Mar-
sokhod roverto determine its operating characteristics for plan-
etary missions [22]. The most recent Marsokhod Kilauea
mission was the highest fidelity terrestrial simulation of a plan-
etary rover mission we have done to date. The mission was
organized so that separate Mars and Lunar science teams unfa-
miliar with the site except through high altitude photographs
were given a science objective to perform with a remotely oper-
ated rover The science teams and missions operations were
conducted from a control center at NASA Ames, through a sat-
ellite communications link to the field site. VEVI was used to
provide situational awareness during the mission, although the
lack of task level control over the vehicle and the relatively
sparse sensor stream limited our use of VEVI to compensate for
communications time delagince the Kilauea mission, we now
have task level control over the Marsokhod roesd plan a
future science field trial to complete the testing of VEVI for task
level control of a planetary exploration rovErgure 19 shows

Figure 19The Marsokhod rover at the Kilauea volcano in Hawaii dur-
ing the planetary analog testing.

the Marsokhod rover during the Kilauea mission in March
1995, and figures 8, 10andl &nd show the operator interfaces
used to control it.



VI. Drawbacks

A. Vehicle Sensor Dependence

The main drawback to our approach for remotely operating a
vehicle in an unknown environment is the current dependence
of the system on sensed information from the remote site. As
stated above, most behaviors of objects in the renderer environ-
ment is a reflection of some state sensed by the remote mecha-
nism and relayed back to the operaidis means that when the
sensing is degraded for some reason, the virtual environment
becomes less useful, and sometimes misleading. A potential
solution to this is more rigorous naotification to the operator of
degraded information in the environment, and more reliance on
predictive kinematic and dynamic simulations in the system.
Although we do currently have the ability to mix the output of
physical simulations with sensed state information, we have not
yet relied on that capability very heavily during field missions.

B. High-Level Control

As mentioned earliethe use of VEVI to control a remote
mechanism in the presence of sigr@it time delay becomes
more efficient if the mechanism has on-board automation. Two
local behaviors are particularly useful. The first is for the vehi-
cle to maintain its own safety in the hazardous environment,
through relexive behaviors which avoid obstacles or halt the
vehicle if hazards are sensed [23][24]. The second is for the
vehicle to be able to execute high level commands from the
operator Rate control of a vehicle from within VEVI is rela-
tively inefficient, whereas position or path control is much more
efficient. One of the benefits of using a virtual environment to
control a mechanism is that commands may be previewed and
simulated in the environment prior to sending them to the vehi-
cle.

C. Program Structure

This paper describes version 2.0 of VEVI. This version of the
3D renderer software evolved over time as our experience
increased through ouiefd trials. New features were grafted
onto the original structure, which was not well designed for
extensibility We have come to the point with this version that
adding or changing the structure often causes sfidetgfkelse-
where in the system. &/have also been reluctant to make
desired changes to the system, because offthrémécessary to
support the changes under the existing structuechaVe there-
fore decided to freeze this version at its current implementation,
and rewrite the renderer and communications nodes, and
change some of the file formats, with modularity and extensibil-
ity in mind from the beginning. The new system is already
under alpha testing, and is described in Piguet [4].

VII. Summary and Conclusion

We have developed an operator interface system designed to
support the remote operation of complex science exploration
mechanisms in the presence of substantial communications
time delayThis system, called theérttal Environment ¥hicle
Interface, uses a highly distributed communications architec-
ture and commercial software products to implement a virtual
environment operator interface tool. Our experience to date
with VEVI in terrestrial scienceidld experiments using

remotely operated vehicles has demonstrated that an operator
interface based on virtual environment techniques can improve
the situational awareness of the operatnd can convey a ig&
amount of information about the vehicle and its surroundings
quickly and concisely to the operattithe VEVI ground oper-
ations system is coupled with a vehicle withfisignt software
automation to allow it to respond to task-level commands and
keep itself safe while executing those commands, thenfihe ef
ciency of the mission as measured by the amount of science per-
formed per command cycle to the vehicle is much improved
over conventional control approaches.
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